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Abstract—Debugging today’s large-scale distributed appli-
cations is complex. Traditional debugging techniques such
as breakpoint-based debugging and performance profiling
require a substantial amount of domain knowledge and do
not automate the process of locating bugs and performance
anomalies. We present ORION, a framework to automate the
problem-localization process in distributed applications. From
a large set of metrics, ORION intelligently chooses important
metrics and models the application’s runtime behavior through
pairwise correlations of those metrics in the system, within
multiple non-overlapping time windows. When correlations
deviate from those of a learned correct model due to a bug,
our analysis pinpoints the metrics and code regions (class
and method within it) that are most likely associated with
the failure. We demonstrate our framework with several real-
world failure cases in distributed applications such as: HBase,
Hadoop DFS, a campus-wide Java application, and a regression
testing framework from IBM. Our results show that ORION is
able to pinpoint the metrics and code regions that developers
need to concentrate on to fix the failures.

Keywords-debugging aids; tracing; diagnostics; performance
metrics

I. INTRODUCTION

Debugging today’s large-scale distributed systems is com-

plex. Systems are composed of multiple software compo-

nents often running on distributed nodes. The interactions

between these components are complex enough that they

cannot all be enumerated a priori. The unpredictability of

the execution environment and its effects on the application

execution increases difficulty in the debugging process. Fail-

ures can come from different layers of the system—network,

hardware, operating system, middleware, and application

layers. Thus in general, it is necessary to monitor the

behavior of all the layers to understand the origin of failures.

Why another debugging tool? There exists a significant

number of debugging tools today [1], [2], [3]. They work

well for many kinds of failures though they require varying

amounts of developer intervention. Despite the existence

of this rich set of tools, the debugging process is time

consuming and it often requires full domain knowledge of
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the program to find where problems originate in the source

code. Profilers [4], [5], [6] can help in isolating performance

bottlenecks, however, identifying the root cause of the bottle-

neck still remains essentially a manual process. Research on

distributed systems has developed functional techniques that

can help in debugging, such as program tracing and replay

debugging [7], [8], [9], model checking [10], [11], [12], and

log analysis [13], [14], [15], [16]. But there remains work

to be done to build on these techniques to create a usable

debugging tool.

In this work, we focus on debugging distributed appli-

cations by identifying the region of code where a fault first

becomes active. The developer can then focus on this region

to fix the problem rather than spending time in examining

the entire source code. We focus on manifested-on-metrics

(MM) bugs, i.e., those bugs that manifest themselves as

an abnormal temporal pattern in one or more metrics at

the hardware, OS, middleware, or application layers. MM

bugs can manifest as performance or correctness problems.

Examples are resource leaks prior to an application crashing,

or incorrect use of synchronization locks prior to the appli-

cation hanging. We do not handle bugs that lead to incorrect

output, data corruption or failures that do not affect a system-

measurable metric.

Design approach. We present ORION, a framework for

localizing the origin of MM faults in distributed applications.

ORION works by profiling a variety of metrics as the

application is executing, either at declared instrumentation

points (such as, method entry or exit) or asynchronously with

a fixed periodicity. Through machine learning techniques, it

verifies if the runtime profile is similar enough to profiles

created offline of non-faulty application’s executions. If it

is not, ORION goes back through traces to indicate which

metrics caused the divergence and from that, to the region

of suspect code. The mechanism is probabilistic thus a rank-

ordered list is provided to the developer for inspection.

This design approach is shared with a few prior software

systems [17], [18]. However, unlike these prior systems,

which only gather traces from one or two dimensions of

the application, e.g., CPU and memory, ORION performs

application profiling along a large number of metrics. These

metrics do not have to be hand-picked by the developer.

ORION first automatically selects important metrics from



the entire set for detailed analysis and then uses correlations

between the metrics to diagnose subtle errors.

Summary of findings. We deploy ORION and eval-

uate it on diverse distributed applications: HBase [19],

Hadoop [20], an on-campus Java Enterprise Edition (JEEE)

application, called StationsStat, and an IBM regression test-

ing application for its full system simulator called Mambo.

We focus on failures that were difficult to debug manually.

We demonstrate ORION with a total of 7 bug cases from

these applications and find that the root cause is related to

the top 3 abnormal metrics or code regions in 6 of them. The

ORION code and data for this paper are available at [21].

The main contributions of this paper are:

(1) We introduce the concept of multi-dimensional metric

profiling to provide problem determination for a wide variety

of root causes. We show that, despite profiling a large

number of metrics, it is possible to find the “needle in the

haystack”, i.e., the problematic metrics in a (possibly small)

time window amidst a large number of normal metrics.

(2) We focus on a subtle class of problems that are not

diagnosable by comparing instantaneous values of metrics

against thresholds. Our approach develops a correlation-

analysis algorithm that identifies when joint behavior of

metrics is suspect.

(3) We successfully demonstrate ORION in four different

distributed applications and under 7 failure conditions. In

all of the cases, ORION pinpoints the origin of problems

to abnormal metrics and in most of the cases it finds code

regions that require human attention to fix the failures.

The rest of the paper is structured as follows. In Section

II, we provide an overview of the execution of ORION.

In Section III, we present the detailed design. In Section

IV, we describe the seven case studies. In Section V, we

review related work. In Section VI, we discuss practical

implications of this work. Section VII concludes the paper.

II. OVERVIEW

A. Measurement Gathering

ORION collects measurements of multiple metrics at

different levels in the system, i.e., hardware, OS, middle-

ware and application by means of third-party monitoring

tools. Using collected measurements, ORION builds models

of normal behavior, which permits localizing the failures’

origin.

The appendix shows the list of metrics that we measure.

Although this is not an exhaustive list of all the metrics in

the system, we tried to monitor as many metrics as possible

from multiple layers. ORION does not impose a limit in

the number of metrics used. Instead, it allows developers to

use as many metrics as they think are useful for debugging.

ORION addresses the curse of dimensionality problem by

filtering out noisy metrics and automatically zooming into

the metrics that are relevant for failure debugging.

Some examples of the metrics that we gather are:

End-user Application: per-servlet statistics such as process-

ing time, request and exception counts; Middleware: cache

hits and accesses, number of busy and created threads, and

request processing time from the middleware layer (such

as Apache Tomcat); OS: cpu- and memory-usage, context

switches, file descriptors, disk reads/writes, packets received

and transmitted, stack size; Hardware: L1/L2/L3 data and

instruction cache hits and misses, TLB misses, branches

taken/not taken/miss-predicted, load/store instructions, hard-

ware interrupts.

Importance of collecting metrics from different lay-

ers. Bugs can manifest in different layers of the system,

therefore it is necessary to monitor metrics from all layers.

For example, a file-descriptor leak often manifests as an

abnormal pattern in OS-related metrics such as memory and

file-descriptor usage—Section IV-A illustrates this case in

a file-descriptor leak bug in Hadoop. Other bugs can be

diagnosed faster if hardware-related metrics are analyzed.

To illustrate this, consider the sample code in Figure 1.

Here, a performance problem would arise if a developer does

not realize the importance of the sorting operation at line

8 and comments it out as a result. Then, due to random

nature of the data, branch misprediction will drastically

increase for the if statement at line 11 causing a performance

degradation. In our experiments with multiple runs of this

bug, performance can be reduced by a factor of 2.4x. To

our astonishment, we found that many developers are not

aware of such bugs—in fact this was one of the most voted

topics in stackoverflow [22] and also one of the most viewed

questions with more than 214,000 views. To further verify

this fact, we conducted a survey with 30 respondents with

3 to 7 years of experience in software industry. Only 23%
of them realized removing the sort statement might degrade

performance.

In cases like in Figure 1, hardware metrics related to

branch-misprediction would be more useful than other met-

rics in finding the problem’s root cause. Since it is difficult

for developers to select a priori the important metrics in

1 /∗From a random da ta−s e t , add numbers g r e a t e r t h a n 127

∗ /

2 i n t a r r a y S i z e = 50000 ;

3 i n t d a t a [ ] = new i n t [ a r r a y S i z e ] ;

4 Random rnd = new Random ( 0 ) ;

5 f o r ( i n t c = 0 ; c < a r r a y S i z e ; ++c )

6 d a t a [ c ] = rnd . n e x t I n t ( ) % 256 ;

7 /∗ No s o r t i n g c a u s e s b ranch m i s p r e d i c t i o n ∗ /

8 / / Ar rays . s o r t ( d a t a ) ;

9 long sum = 0 ;

10 f o r ( i n t i = 0 ; i < 100000 ; ++ i ) {
11 f o r ( i n t c = 0 ; c < a r r a y S i z e ; ++c )

12 i f ( d a t a [ c ] >= 128)

13 sum += d a t a [ c ] ;

14 }

Figure 1: Performance bug due to branch misprediction.



debugging, our tool starts with the entire set of metrics

and automatically identifies those metrics with the zoom-

in process that we describe in detail in Section II-C. For

example, when we used our tool in the above scenario, it

identified branch-mispredicted as the top anomalous

metric. When we used only OS-level metrics, it was not able

to accurately identify the root cause.

B. Profiling

ORION can perform multi-dimensional profiling in two

ways: synchronous and asynchronous. In asynchronous

mode, metric collection happens asynchronously to the ap-

plication. The measurement gathering is done by a process

separate from the application process(es). The asynchronous

mode does not interfere with the monitored application

and therefore is a lightweight method. ORION collects OS

metrics values from the Linux /proc file system, hardware

metrics through PAPI [23] and middleware- and application-

metrics values from server containers by querying Java

JMX connectors via a separate Linux process. This method

requires offline processing to “line up” the metric collection

points with the execution points of the application. This is

done by using a common time base since all the involved

processes execute on the same machine.

Synchronous profiling annotates code regions with a set

of measurements. Whenever a code region begins and ends,

this method collects measurements and labels them with

the corresponding code-region name. For Java applications

(such as in the Hadoop and HBase case studies), we use

Javaassist to instrument binary code and to collect

measurements at the beginning and at the end of class-

es/methods.

Notice that ORION can rely on other metric collection

mechanism as long as they can provide at least the asyn-

chronous mode of operation—the main novelty of ORION is

its problem determination algorithms based on multi-metric

data sets.

C. Workflow of our Approach

Figure 2 shows the steps in ORION to diagnose failures.

(1) Trace collection: ORION uses two set of traces to

localize the origin of problems: a normal and an abnormal

trace file. Normal trace files are obtained by collecting

metrics of the application when failures are not manifested.

This can be runs of an earlier bug-free application version

or, in the case of intermittent failures, sections of a failed run

where the fault did not manifest itself. The abnormal trace

file is obtained when the failure is manifested. Labeling a

run as one or the other is a manual process.

(2) Selection of pertinent metrics for modeling: ORION

filters out unimportant (or noisy) metrics from the analysis.

This step can also be viewed as dimensionality reduction. We

used an algorithm based on Principal Component Analysis

(PCA) to reduce the dimensionality of the problem. The

intuition behind this step is to eliminate metrics that do not

provide much information for the rest of the analysis; an

example is constant metrics.

(3) Normal-behavior modeling: ORION creates a baseline

model using the normal-behavior traces. Given traces of n

metrics, the algorithm splits traces into equally sized time

windows and calculates pairwise correlations between all the

n metrics for each time window. These correlation serve as

a summary of the expected behavior of the application in

different time windows.

(4) Suspicious metric selection: Abnormal traces are used

to select the metrics that are correlated with a failure. From

all the n metrics, the top-3 most abnormal metrics are

presented to the user. The user can then focus on finding

the problem’s origin based on the abnormal metrics.

(5) Abnormal code-region selection: Often, finding suspi-

cious metric information in step 3 is not sufficient to infer the

origin of a failure. For example, a metric like CPU utilization

may be affected by any region of code. ORION selects the

code regions that have a high degree of association with the

suspect metric(s). ORION highlights suspicious code regions

so that users can focus on finding bugs that could have

caused the problems within them.

III. DESIGN

A. Selection of Pertinent Metrics for Modeling

Some dimensions (or metrics) are more important than

others when debugging failures. We perform dimensional-

ity reduction to: (i) eliminate redundant metrics from the

analysis, and (ii) reduce computation overhead. We use

Principal Component Analysis (PCA) as a baseline tech-

nique for dimensionality reduction. PCA uses an orthogonal

transformation to convert a set of observations (of possibly

correlated variables (into a set of values of linearly uncor-

related variables, i.e., principal components (PC). Applying

PCA directly does not eliminate metrics from the analysis

(which is our goal). Instead, PCA generates a new set of

metrics which are linear combinations of the input metrics.

We developed a heuristic following the idea in [24] to rank

input metrics based on their importance. The idea is to

rank metrics that are weighted heavily, especially in the

first few PCs of the PCA-generated transformation (which

contain most of the variance of the data), higher than metrics

with smaller weights. Different from [24], we consider the

contribution of each PC to explain the total variance in the

data and design a new algorithm to rank metrics based on

that.

To illustrate, consider Table I with 4 metrics A, B, C, D

and 4 observation rows. In this experiment, the first principal

component (PC-1) and the second principal component (PC-

2) cover 46.7% and 45.3% of the variance of the data,

respectively. In the transformation matrix generated by PCA,

metric A has a weight of 0.7 in PC-1 and metric D has

weight of 0.94 in PC-2. The heuristic used in [24] will



Figure 2: Overview of the problem determination workflow.

Table I: Almost equal variance explained by first two PCs.

Data Transformation Matrix

A B C D PC-1 PC-2 PC-3 PC-4

3 9 3 9 0.70 -0.11 0.68 -0.16
6 7 2 1 -0.21 0.31 0.46 0.80
1 6 2 1 0.66 0.07 -0.57 0.48
8 5 8 4 0.11 0.94 -0.03 -0.32

% of Variance Explained 46.71 45.28 8.0 0

1 metrics : a r r a y of m e t r i c s names

2 W : t r a n s f o r m a t i o n m a t r i x g e n e r a t e d by PCA .

3

4 percentagePCA ← ge tVar ianceE xp la inedByPCA ( W ,

normalizedData )

5 f o r each column i n W :

6 /∗ M u l t i p l y columns by v a r i a n c e c o v e r a g e ∗ /

7 column ← column ∗ percentagePCA [ column ]

8 f o r each row i n W :

9 /∗ C a l c u l a t e maximum v a l u e i n row . S t o r e i n map ∗ /

10 rowMaxValueMap [ row-num ] ← MAX{abs ( row )}
11 rank ← SIZE ( metrics )

12 /∗ S o r t ba s ed on max−weigh t i n each row . Key i s row−num

∗ /

13 f o r each key i n v a l u e S o r t ( rowMaxValueMap )

14 rankMap [ metrics [key ] ] ← rank

15 rank = rank − 1 /∗ Weight i m p l i e s i m p o r t a n c e ∗ /

16 PRINT rankMap

Figure 3: PCA-based heuristic for filtering out metrics.

rank A higher than D. But if we also consider the variance

covered by each PC, metric D should get a higher rank than

metric A.

Figure 3 shows our ranking algorithm. Here, in the

transformation-matrix, we first adjust the weight of a metric

by the corresponding contribution of that PC towards ex-

plaining the total variance of the data. Then, we give equal

importance to each column in the modified transformation

matrix. We calculate maximum weight of a metric across

all columns and then sort metrics based on these maximum

weights to get a total ordering of metrics based on its

importance. This allow us to filter out unimportant metrics

from the rest of the analysis in ORION. The complexity

of this algorithm is O(n2) where n is the number of

metrics. We used the difference in ranks between normal

and abnormal runs to chose important metrics. Performance

bugs tend to change the correlation between metrics and in

turn the weights in the PCA transformation matrix which

changes relative ranking between metrics. More shift in

metrics ranking indicates it was affected by the bug and

hence should be chosen for detailed analysis. This first

pass is very light weight and coarse as it lacks the notion

of time. But it is very useful to reduce the overhead of

detailed analysis in the following phase without losing vital

information.

B. Modeling Sequential Data

Many bugs and performance anomalies develop a charac-

teristic temporal pattern that can only be captured by ana-

lyzing measurements in a sequential manner (rather than by

observing instantaneous snapshots of values). After reducing

the number of metrics with the PCA algorithm, we build

a baseline model that captures temporal patterns between

metrics using correlation coefficients.

Observation window. Traces are split into non-

overlapping windows of the same size. A window can be

viewed as a matrix S × N in which S is the number of

records (or samples) and N is the number of metrics. The

set of records comprises one observation window. Since

we do not know a priori the optimal size of observation

windows (S), i.e., the window size that is sufficient to

capture the temporal patterns that a failure shows, our

algorithm sweeps through multiple sizes for the windows

within a range (between sizes of 100 and 200 samples

in our evaluation). The algorithm then finds the k-most

abnormal windows (irrespective of its size) and, within those

abnormal windows, the correlations and metrics that cause

the unusual patterns. For our evaluation, we use a k value

of 3. Section III-C describes our algorithms for the selection

of suspicious metrics and code regions.

Correlation coefficients. For each observation window,

ORION builds a vector of (pair-wise) correlation coefficients

between all the metrics

CCV = [cc(1, 2), cc(1, 3), . . . , cc(N − 1, N))], (1)

where cc(i, j) is the correlation coefficient of metrics i and

j, i 6= j. We denote this vector as a correlation coefficient

vector or CCV . Correlation coefficients are calculated using

the Pearson correlation-coefficient formula:

cc(X,Y ) =
1

N − 1

N
∑

k=1

(

Xk − X̄

sX

)(

Yk − Ȳ

sY

)

(2)

where N is the number of elements of observations in the

window, X̄ and Ȳ are the mean of variables X and Y



Figure 4: Creation of the normal-behavior hyper-sphere.

respectively, and sX and sY are the standard deviations of

X and Y .

Normal-behavior Model. Using the normal-behavior

traces, our framework creates a baseline model which is

used in step 3 (from the main workflow) to select suspicious

metrics. The model is a set of normal-behavior CCVs

obtained by splitting traces into observations windows and

computing a CCV for each window. We term this model

as a hyper-sphere. Figure 4 shows the process of creating

this hyper-sphere. The number of points in it corresponds

to the number of windows that we obtained from the

normal-behavior traces, and the dimensions (or features) are

correlation-coefficients of metric pairs. Notice that, if we

have N metrics in the analysis, the dimension of the hyper-

sphere is D = N(N−1)
2 .

The idea of using a hyper-sphere where dimensions are

correlation coefficients is that we can use nearest-neighbor

to pinpoint abnormal observation windows from the faulty

traces. Since an observation window is translated to a single

data point (i.e., a CCV ), we can treat the problem of

finding abnormal windows as an outlier detection problem

via nearest-neighbor, i.e., an abnormal window would cor-

respond to the CCV point that is the farthest away from the

hyper-sphere.

C. Detection of Suspicious Metrics

Motivation. The main motivation of our technique is

that the manifestation of faults will change the correlations

between some (affected) metric(s) and the rest of the metrics,

while maintaining the legitimate correlations in the other

metrics. To illustrate this idea, consider a bug where unused

database connections are kept open—metrics such as file

descriptors and open sockets will be affected by the bug and

will exhibit a different temporal pattern than during work-

loads where the bug is not activated. However, correlations

among the other metrics will not be affected.

Our goal is that, when faults are manifested, ORION finds

the metric(s) that is (are) mostly associated with failures.

This is performed by ranking metrics according to their

1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗ /

2 f o r each s i z e s i n r a n g e r :

3 setOfWindows ← c r e a t e windows s e t o f s i z e s

4 f o r each window w i n setOfWindows :

5 d ← f i n d NN d i s t a n c e of w i n t h e hype rSphe re

6 ccs ← g e t t o p abnorma l c o r r . c o e f f i c i e n t s o f w

7 Append {w , d , ccs} t o tuplesList

8

9 /∗ S e l e c t t h e most abnorma l windows ∗ /

10 S o r t tuplesList bas ed on d i s t a n c e d ( h igh t o low )

11 abnormalWindows ← g e t t o p e l e m e n t s i n tuplesList

12

13 /∗ B u i l d h i s t o g r a m of most abnorma l m e t r i c s ∗ /

14 f o r each window w i n abnormalWindows :

15 f o r each c o r r e l a t i o n cc c o r r e s p o n d i n g t o w :

16 From cc add m e t r i c s X and Y t o histogram

17

18 P r i n t t h e most f r e q u e n t m e t r i c s i n histogram

Figure 5: Algorithm to select the suspicious metrics from

traces of a failed run.

contributions to correlation breakups and by selecting the

top-k metrics in this ranking. The application developer can

subsequently focus on reviewing the code which affects

these suspicious metrics to locate the root cause of the

problem.

Algorithm overview. The goal of the algorithm is to

select the metrics that are most likely associated with the

problem’s origin. The algorithm’s input is a normal-behavior

hyper-sphere and traces of a failed run. The algorithm’s

output is a list of metrics that are ranked by abnormality

degree. The algorithm is presented in Figure 5.

The algorithm has the following main steps:

Statistics creation per window: We create observation win-

dows of multiple sizes from the failed-run traces file. For

each window, we calculate two statistics: (1) the nearest-

neighbor (NN) distance of the window from the hyper-

sphere representing normality. This distance is calculated

by first computing a CCV from the window and then

by finding the euclidean distance between the CCV and

the closest point in the hyper-sphere using the formula

d =
√

∑D

i=1(cci − bbi)2, where cci and bbi are correlation

coefficients; (2) the dimensions that have the highest weight

in making the CCV far away from the hyper-sphere. A

dimension here corresponds to a correlation coefficient.

Abnormal window selection: Windows are sorted by their

NN distance from high to low and only the top-k windows

in the list are taken for further analysis (k = 3 for our

evaluation). These windows correspond to time periods

when abnormal behavior is manifested.

Select most abnormal metrics: Once the top-k abnormal

windows are ranked, within each window, the correlation

coefficients (CCs) are ranked by how much they contribute

to the NN distance of that window. Now the top-k CCs are

taken from each abnormal window, giving a total of k × k

CCs. Recall that each CC involves two metrics. With these

short-listed CCs, the metrics that are present in them are



1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗ /

2 f o r each s i z e s i n r a n g e r :

3 normalWins ← g e t windows from normal t r a c e s

4 failedRunWins ← g e t windows from abnorma l t r a c e s

5 f o r each window w i n failedRunWins :

6 d ← NN d i s t a n c e of w from normalWins

7 Append {w , d} t o tuplesList

8

9 /∗ S e l e c t t h e most abnorma l windows ∗ /

10 S o r t tuplesList bas ed on d i s t a n c e d ( h igh t o low )

11 abnormalWindows ← g e t t o p e l e m e n t s i n tuplesList

12

13 /∗ B u i l d h i s t o g r a m of abnorma l code−r e g i o n s ∗ /

14 f o r each window w i n abnormalWindows :

15 Add code r e g i o n s i n w t o histogram

16

17 P r i n t t h e most f r e q u e n t code r e g i o n s i n histogram

Figure 6: Algorithm to select the suspicious code regions

from traces of the failed run.

counted up and the top-k most frequently occurring metrics

are flagged as the most abnormal metrics. Notice that we use

the same parameter for filtering the top choices (windows,

CCs, metrics). In theory, they are different parameters, but

in practice the same value (k = 3) works well and reduces

the search space of parameters, a desirable outcome for any

deployable tool.

D. Detection of Anomalous Code Regions

After the suspicious metrics are detected, ORION high-

lights code regions that make metrics abnormal so that

developers can focus on them to fix the problem. ORION first

finds suspicious periods of time in which a metric shows an

unusual temporal pattern (i.e., an abnormal window). Then,

within that period, ORION looks for outlier observations,

i.e., an abnormal code region.

Algorithm requirements. The algorithm for detect-

ing abnormal code regions is similar to the abnormal

metric-selection algorithm. A major difference is that

only one metric is used in the analysis, i.e., the abnormal

metric. This metric is given by the previous step, i.e.,

the metric-selection step. The user can opt to execute this

algorithm using the top-two (and top-three and so on)

abnormal metric(s) if the top-one abnormal metric does not

help in finding the problem’s origin. The algorithm’s inputs

are traces files (from the normal and the failed run) such

as in Figure 4 but with only one column—this column

corresponds to measurements of the abnormal metric. The

output of the algorithm is the top few anomalous code

regions. We assume that each record in this file is annotated

with a code region.

Algorithm overview. The algorithm is shown in Figure 6.

First, we construct a set of windows from traces of the

normal run and another set from traces of the failed run.

Second, we find NN distances of the windows of the failed-

run from the normal-behavior windows. Then, to select the

most abnormal windows, we rank the failed-run windows

based on the NN distances (from high to low) and select

only the top-k windows. Finally, we build a histogram of the

occurrences of code regions in these abnormal windows—

as we observe from our case studies, the faulty code regions

in performance bugs execute frequently in the most unusual

periods of time. The top-3 most frequent code regions are

shown to the user.

How to compare one-dimensional windows? In the

previous algorithm, we find the difference between two

windows by calculating the Euclidean distance of their

corresponding CCV s. We summarize the window’s infor-

mation by calculating aggregates of its values: average,

standard deviation, minimum, maximum and sum. These

aggregates become the features of a window. ORION then

finds the dissimilarity between two windows by computing

the Euclidean distance using these aggregates as features.

IV. EVALUATION

In this section, we describe how we debugged seven per-

formance bugs in different distributed applications: Hadoop,

HBase, a distributed system heavily used in IBM as re-

gression framework, and a distributed application used by

students in a large university. Due to space limitations,

we only present in detail the first 4 cases and provide a

summary of the results of cases 5–7. In all of the cases,

ORION reduces substantially the time spent in localizing the

problem origin by showing the metric most perturbed by the

fault, and if needed further, the abnormal code region. The

process is fully automated so users do not need to have

full understanding of the application and its components

dependencies.

A. Case 1: Hadoop DFS

Hadoop is an open-source framework that supports data-

intensive distributed applications [20]. It enables applica-

tions to work with thousands of computational nodes and

a large amount of data. We use ORION to diagnose a file

descriptor-leak bug that occurred in the Hadoop Distributed

File System (HDFS) in version 0.17. The bug report is

HADOOP-3067.

We collect all the OS and hardware level metrics given

in Table IV via synchronous profiling. All the Java classes

and public methods within each class are instrumented.

Since we are debugging the Hadoop DFS, we only consider

the java/org/apache/hadoop/dfs package. A total

of 45 Java classes and 358 methods in these classes are

instrumented.

This bug is manifested as a failure in one of

the HDFS tests (the TestCrcCorruption test.) The

bug origin is that subclasses DFSInputStream and

DFSOutputStream of the main class DFSClient

did not handle open sockets correctly by not closing

them when they are not used anymore. The patch that

developers suggested to fix the bug included changes



Figure 7: Results from ORION for the HDFS bug.

Table II: Average use of file descriptors per class in HDFS for
the specific bug discussed in Section IV-A.

Rank Class Average # File Descriptors

1 NamespaceInfo 6.0
2 INodeDirectory 1.31
3 INode 1.29
4 UnderReplicatedBlocks 1.25
5 DatanodeInfo 1.24
6 DataNode 1.21
7 DatanodeBlockInfo 1.2
8 DFSClient 1.16
9 DataBlockScanner 1.14
10 NameNode 1.13

to the following code: class DFSClient, subclasses

DFSInputStream and BlockReader (which is used

internally by DFSOutputStream). We used the buggy

version and revision 0.17 to obtain traces of a failed

run, and code from a previous revision where the

TestCrcCorruption test passed to get traces of a nor-

mal run.

Figure 7 shows ORION’s results. The top-three abnormal

metrics presented by ORION are: (1) minor_faults (No.

minor page faults), (2) num_file_desc (No. open file

descriptors), (3) L2_LDM (level-2 load miss). The 2nd

metric is associated with the problem’s origin since an

increase in the number of open sockets caused by the bug

affects directly the number of open file descriptors. Metrics

(1) and (3) are both memory related and they are pinpointed

as suspect because the bug also causes abnormal memory

consumption patterns.

ORION also presents abnormal code regions, first, based

on Java classes and second, based on subclasses (of the ab-

normal classes) and methods within them. ORION correctly

pinpoints DFClient as the most abnormal class. Within

DFClient, ORION highlights DFSOutputStream as the

main abnormal subclass. This is only partially correct—

part of the bug fix is in BlockReader which is used in-

ternally by DFSOutputStream and DFSInputStream;

however, DFSOutputStream does not require changes to

fix the bug.

To see if a simpler, and currently practiced, approach can

lead the developer to the origin of the bug faster, we set

up the following hypothetical steps for hunting this bug.

Figure 8: Results from ORION for the HBase bug.

Suppose that a simple profiling tool indicates a high number

of file descriptors in use. The developer then proceeds to

examine which classes use file descriptors most. The answer

to this question is shown in Table II. The average number

of file descriptors used per method is calculated by taking

an average across all invocations of the methods of that

class. From this, the developer would be likely to inspect

the classes appearing near the top. It is only when one gets

to the 8th ranked class that one gets to the class where the

bug lies, DFSClient. Thus, this will lead to significant

time manually inspecting classes 1–7 and ruling them out

as the source of the bug.

B. Case 2: HBase

HBase is an open-source, distributed, column-oriented

database [19]. It operates on top of distributed file systems

like the HDFS and is capable of processing very large scale

of data with MapReduce. We use ORION to collect and

analyze the metrics of a deadlock bug in HBase 0.20.3 (bug

report HBASE-2097). We collect all the OS-level metrics

shown in Table IV. There are 27 java classes that are in-

strumented from the hadoop/hbase/regionserver/

package. They include classes to handle region columns,

store data files, logs and many other abstractions. These

classes include 184 methods which are all instrumented.

The bug, which manifests as an application’s hang, is

the result of two locks being acquired in an incorrect

order. The bug lies in two methods, HRegion.put and

HRegion.close. It is activated by running the HBase

PerformanceEvaluation testing tool which is used to

evaluate HBase’s performance and its scalability. The bug

manifestation is intermittent—it manifests on average 75%

of the time—making it particularly difficult to localize.

We ran a previous bug-free version to generate normal-

behavior traces and applied ORION against the traces of a



failed run when the deadlock manifests. Figure 8 shows the

results. The top abnormal metric, i.e., user_time, is the

amount of user-level CPU time. This metric per se does

not provide much insight into the failure origin since it

is difficult to correlate that to a code region. We observe

that, using user_time as our abnormal metric, the most

abnormal code region is HRegion class, which is where the

bug lies. Further, considering the 2nd most abnormal metric

wchar (the number of bytes which the program has caused,

or will cause to be written to disk), the flagged code region

is also the HRegion class. This confirms that HRegion is

where the developer needs to focus her attention.

The bug patch shows that the bug resides in the HRegion

class. This class stores data for a certain table region and all

columns for each row—a given table consists of one or more

HRegions. The patch flips the order of acquiring the two

locks (a write lock and then a read lock) and consequently

the order of releasing them. It puts the change in both the

HRegion.put and the HRegion.close methods. We

speculate that spinning on locks in the deadlock situation

causes the user_time metric to go awry.

The abnormal methods within HRegion that are

flagged by ORION are getRegionName, isClosed and

toString (Figure 8). They do not correspond to the

methods where the bug lies (put and close). Through

a detailed investigation, we identify the cause of this. The

three flagged methods are invoked much more often within

HRegion than are the erroneous methods. However, the

three flagged methods and the erroneous methods occur

close together in time. The algorithm in ORION, after it

has zoomed into a time window where the fault manifested

itself, considers frequencies of methods within that suspect

time window to decide which methods to flag. This causes

it to flag the most frequently invoked getRegionName,

isClosed and toString methods.

C. Case 3: StationsStat

StationsStat is a Java multi-tier application that is used to

check the availability of workstations on Purdue’s computing

labs. Students on the campus use StationsStat daily to check

the number of available Windows or Mac workstations for

each lab on campus. StationsStat is managed by Purdue’s

IT department (ITaP) and runs in Apache Tomcat 5.5 on

RedHat Enterprise Linux 5 with an in-memory SQL DB.

Due to an unknown bug, periodic failures were observed

in which the application became unresponsive. System ad-

ministrators received failure reports from their monitoring

system, Nagios, or from user phone calls. Since the problem

root cause was unknown, the application was restarted and

the problem appeared to go away temporarily. StationsStat’s

administrators tracked 495 metrics from the OS, middleware,

and application layers at 1 minute intervals (using asyn-

chronous profiling) for more than two months. We collect

the application, OS and middleware metrics in Table IV.

Figure 9: Results from ORION for the StationsStat case.

StationsStat was a challenging scenario, not only because

the problem’s root-cause was unknown, but also because

there was no error-free data available to create the normal-

behavior hyper-sphere. Fortunately, ORION can still work in

this scenario by using almost error-free data. The admin-

istrators noticed that, after restarting StationsStat, the next

failure was often seen only after a week or more—symptoms

seemed to suggest that the problem, possibly a resource

exhaustion bug, grew progressively from a service restart

to a failure. ORION therefore used a data segment collected

right after a restart to build the hyper-sphere representing

normality. ORION also filtered out constant metrics in this

phase which resulted in 70 non-constant metrics for the rest

of the analysis.

In contrast with the previous cases, we conducted a blind

experiment in which ORION gives us the suspicious metrics

without us knowing the actual root-cause of the problem.

Figure 9 shows the abnormal metrics that ORION finds. We

then compared ORION’s answer to the application devel-

opers best guess of the root-cause. The results show that

the suspicious metrics given by ORION matched well with

what the developer thought to be the origin of the problem.

The 2nd abnormal metric is the number of active SQL

connections. The application had only one localized region

where it made calls to the SQL driver that Tomcat used to

handle database connections. The developer concluded that

the SQL driver code was buggy since it was obvious that the

few lines of SQL driver invocation code in his application

was not. Upgrading the SQL driver fixed the problem

and the application continues to run today providing an

important function to students all over campus. Interestingly,

the top metric flagged by ORION—the processing time of a

servlet— had nothing to do with the bug. We found that this

is due to large differences in workload between our normal

and abnormal data sets (normal data were collected right

after the server restart, while abnormal data were collected

after the server has been up for a while). This negative

result highlights the importance of getting the normal and

the abnormal data sets under similar workload conditions.

In this case study, there was no need for the additional

step of ORION where it maps the abnormal metric to a code

region. This is because only one small localized region of

the application code had anything to do with SQL, which

was implicated by the metric.



Figure 10: Mambo Health Monitoring system.

D. Case 4: Mambo Health Monitor

The Mambo Health Monitor (MHM) is a regression test

system for the IBM Full System Simulator, commonly

known as Mambo. Mambo is a computer architecture sim-

ulator for systems based on IBM’s Power(TM) architecture.

Mambo has been used in the development and testing of a

wide range of systems, including IBM’s Power line of server

systems (Power5, Power6, Power7), the Cell(TM) processor

used in the Sony Playstation3(TM), and IBM’s BlueGene

systems. The MHM executes tests on the simulator to detect

regressions in behavior that may be introduced by new

development. The tests are drawn from a test suite that

covers the key functionality in all the major target systems.

Test results are stored in an SQL database and are accessed

through a web-based interface. Figure 10 shows the system’s

elements.

There is a servers farm which serve as MHM clients.

Each client accesses a database to determine which tests

have to be run. The client then checks out the code from

a CVS repository (after authentication) and proceeds to run

the test. The test execution sometimes requires specialized

resources from the node on which it is executing, such as,

a virtual network port. Upon completion, the client writes

results in the database (success or failure) along with some

informational items, such as, performance results.

Failures. A test-case can fail due to a problem in the envi-

ronment or a problem with the architecture being simulated.

Examples of environment-related problems causing a test to

fail are many: a NFS connection that fails intermittently, a

cron job fails to get authenticated with the LDAP server,

Linux failing to map the simulator’s network port to the

machine’s network port, /tmp filled up. A problem like this

can make a developer falsely believe that her architecture

code is buggy when in reality the problem lies in the envi-

ronment. A key source of difficulty is that these problems are

often transient and the software elements do not have error

messages that correspond to the actual problem. We choose

the problem of losing NFS mount as it has been a frequent

problem for users over its seven year lifespan. We emulate

NFS problems by dropping outgoing NFS packets with a

probability of 0.1. The NFS packet dropping functionality

is implemented by adding an iptables rule at the start of the

faulty run.

Figure 11: Results from ORION for the MHM problem.

Code annotations. We run ORION in an asynchronous

mode. The profiling process collects metrics at a 1 sec

granularity. MHM was instrumented at 48 instrumentation

points in 1400 lines of Tcl source code, which resulted in

2227 records. The Tcl script invokes Perl and bash scripts.

Since these had been rigorously tested, we were told that

they should be kept out of scope of our problem localization

effort. The instrumentation code records a timestamp and an

identifier for the code region. Unlike in the other applica-

tions, this code did not have finely granular methods (and of

course no classes). Therefore, the points to insert instrumen-

tation was a subjective decision and this was done based on

the amount of comments in the code. Our instrumentation

covers the starts and the ends of crucial operations, such as,

CVS operations, NFS operations, and database operations,

also other structures, such as if-then-else blocks.

Results. We collect traces of a normal and of a failed

run. We use the same machine as the MHM client and

keep the workload pattern the same. Figure 11 shows the

results of applying ORION. First, notice that the two top

abnormal metrics are metrics related to I/O, i.e., wchar

and read_bytes (written characters to disk and read

bytes from disk, respectively). Next, we find abnormal code

regions using wchar as our abnormal metric—ORION ranks

equally four different code regions as the figure shows.

Notice that none of the pinpointed regions perform any

operation that makes use of NFS, the root cause. However,

when we look at the code (Figure 11), we notice that

these regions are short and are always executed together

inside a loop, so they can be grouped into one region.

We also notice that, right after this (grouped) region, there

is a code region that makes use of the NFS, i.e., the

Checking-the-existence-of-lock-file region.

This region performs I/O to access a file that is mounted

using NFS and is affected by the injected fault.

The reason the NFS region is not ranked as an abnormal



region (in fact is ranked 4) is that measurement inac-

curacies emerge from asynchronous profiling. These code

regions (demarcated by our instrumentation points) are small

compared to the frequency of metric collection. Hence, it

becomes difficult to accurately map the metric collection

points to within an instrumented code region. In these cases,

ORION pinpoints to the user not only the abnormal code

region but also one region before and one region after the

abnormal one. Hence, a design decision in ORION is that

when asynchronous profiling is used and the instrumented

code region is “small”, ORION pinpoints to the user not

only the abnormal code region but also one region before

and one region after the abnormal one. This strategy works

well here since the code region that is affected by the fault

is right after the region that ORION selects as abnormal.

E. Summary of Cases 5–7

Case 5. This bug (HBASE-3098 report) manifests itself

as an application hang in HBase version 0.90. ORION results

suggest using the vsize metric as the abnormal metric to

find the abnormal code regions. ORION ranks the following

classes as the top-3 most abnormal: HRegionServer,

ZooKeeperWatcher, HBaseServer. The fixing patch

for this bug (suggested by the developers) contains changes

to 12 Java classes, one of this being HRegionServer.

We noticed that the the Hmaster class, which is ranked as

number 4 in ORION, is also part of the patch. Two buggy

code regions showed up in top 5 results. There are a total

of 131 classes that the developer would need to analyze to

fix this bug. ORION reduces the search space substantially

to a handful of classes.

Case 6. This bug (HBASE-6305 report) manifests itself as

a hang in the TestLocalHBaseCluster test in Hbase

version 0.94.3. According to the bug report, the origin

of the fault appears to be a stack overflow error. Using

ORION we find the following top-3 abnormal code regions:

HBaseServer, HRegionServer, ServerName. The

suggested patch fixes only two classes—one of those is

HRegionServer which was ranked by ORION as the

second most abnormal class. There is a total 155 classes

that the developer would need to analyze in order to fix this

bug without ORION.

Case 7. This bug (HBASE-7578) was one of the most

difficult to debug since it only manifested occasionally (in

the TestCatalogTracker test case) as a hang. The

top-3 abnormal classes given by ORION did not contain

the origin of the bug, i.e., they were not changed by

the suggested patch. However, ORION was able to show

CatalogTracker which was part of the patch, in its top-

5 results. Also notice that the developer would have had to

analyze more than 44 classes to fix this bug without the use

of ORION.

Table III: Performance measurements.

Case No. Bug-report ID Bug localization time (min)

1 Hadoop-3067 4.06
2 HBase-2097 15.32
3 StationsStat 31.04
4 JHM 0.48
5 HBase-3098 4.90
6 HBase-6305 10.35
7 HBase-7578 2.10

F. Performance

We measure the time ORION spends in bug localization.

This involves creating the hyper-sphere based on normal-

behavior traces, finding the abnormal metric and, subse-

quently, the abnormal code region. Table III shows our

measurements. The localization time depends on the amount

of traces and metrics that are collected in a bug case. The

amount of traces depends on the number of instrumented

functions and their call frequency.

V. RELATED WORK

Various tools exist to help programmers and network

administrators localize the problems in distributed appli-

cations. Most of these tools can be grouped into these

main categories: traditional debuggers and execution replays,

model checkers, and statistical methods. Each type of tools is

appropriate for different scenarios, as we will discuss below.

Traditional debuggers such as gdb, and tools that enable

execution replays [8], [9] let the programmer find the exact

line of code of the bug. However, for this to be feasible,

the programmer needs to have a good guess of where the

problem lies. Therefore, these tools are complimentary to

our tool since our tool reports suspicious regions of code,

and when it is not obvious where the bug is, the programmer

can use these tools to pinpoint the bug. Attariyan et al. [3]

propose a technique that determines the root cause of

performance problems using taint analysis. It is suitable for

cases where the source of the problem is user input or the

configuration file.

Model checkers are useful for checking small applica-

tions against specifications [10], [11]—due to its exhaustive

nature, it is not feasible for most real-world applications.

In addition, it is more appropriate for checking against

specifications. Liu et al. [12] propose a technique that does

live model checking and provides execution replay. The

programmer writes a predicate that is invariant throughout

the execution, and this predicate is checked as the application

runs. When the predicate is violated, the system states

leading to the violating state are given as output. While this

approach works well for specifications, as the instruction

that changes the system state from conforming to violation

is usually the root cause of the problem, for other types

of problems such as performance problems, the errors may

have accumulated from different regions of the code before



the specification is violated. Our tool does not assume that

the instruction that makes the system state in violation is the

root cause of the problem, and is thus more applicable to a

wider range of problems.

There is a volume of work on statistical methods to

detect and localize problems. Some of the work analyzes

application logs [13], [14], [15], [16]. However, there is

often a one-to-many mapping between the log record cor-

responding to the problem and the actual code regions that

could be the source of the problem. [25], [26], [27] analyze

request flows to diagnose problems in request-processing

applications. Other work analyzes metric values, typically

using machine learning algorithms [17], [28], [29], [30].

In [17] and [28], the signature of the current problem is

compared to a database of known problems. If there is a

match, the diagnosis and fixes used previously can be reused

again. This approach is suitable for problems that are not

easy to fix even if the root cause is known (e.g., overloaded

servers), problems due to the environment, or hardware

problems. In other situations, once a problem is diagnosed

and fixed, it will not occur again, limiting the usability of

the tool. The overall approach of [29] and [30] is similar

to our approach in that machine learning models are trained

based on training data. If the system is in an abnormal state,

the metrics that are most abnormal are given to localize the

problem. In addition, when this is not enough to pinpoint

the location of the fault, ORION goes a step further and

provides a ranking of most suspicious code regions to reduce

the programmer’s effort needed to fix the problem.

VI. DISCUSSION

We discuss practical limitations of this work:

• We observe that, as ORION drills down

deeper looking for problematic code regions

(class→subclasses→method), it provides less accurate

results. An example is the Hadoop bug in which we

are able to identify the abnormal code region at a Java

class granularity but not at a method granularity.

• Applications that do not provide code-region delimiters

would require manual effort from the developer (like

with the MHM system) to indicate what are good

instrumentation points. For most applications, however,

ORION automatically annotates entry and exit points of

methods.

• A trade-off of our asynchronous profiling approach

is the difficulty of mapping metric samples to code

regions accurately, when the code region is short rel-

ative to the time it takes to sample metrics. However,

this comes with the advantage of minimal perturbation

of the application. For asynchronous profiling, ORION

provides code regions that are adjacent to whatever

code region it finds as abnormal. For example, if the

bug arises only when a particular package is updated,

she could only instrument that package to look for the

bug.

• Although in bug cases 1, 2 ,5–7 we collect metrics from

a single node (due to the nature of the test cases), our

approach also works for multi-node metrics. In such a

case, ORION would have to label metrics from different

nodes and treat them as different metrics (or features).

Cases 3 and 4 are fully distributed and do not need this

special treatment.

VII. CONCLUSION

We propose ORION to perform root cause analysis for

failures in distributed applications. From a comprehensive

set of monitored metrics, ORION pinpoints the metric and

a window that is most highly affected by a failure and sub-

sequently highlights the code region that is associated with

the problem’s origin. Our algorithm models the application

behavior through pairwise correlations of multiple metrics,

and when failure occurs, it finds the correlations (and hence

the metrics) that deviate from normality. Our case studies

with different distributed applications show the utility of the

tool—ORION can localize the origin of real-world failures

at a granularity of metrics and code regions in few minutes.
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APPENDIX

Due to space limitations, Table IV only shows some of

the metric types that we analyzed, grouped by layer. The full

list of metrics and descriptions can be seen here [31]. Notice

that some metrics have multiple instances. For example,

the data_source_numActive is the number of active

connections per database—the StationsStat system has two

databases so it has two instances of this metric. Similarly,

Java servlets, containers and server metrics have several

instances.

Table IV: Some of the used metrics.

Hardware Metrics OS Metrics

L1 DCM minor faults
L2 DCM major faults
L2 ICM user cpu time
L1 TCM sys cpu time
L2 TCM num threads
CA SHR virt mem size
CA CLN rss mem size
CA ITV processor
TLB DM stack size
TLB IM read chars
L1 LDM write chars
L1 STM read bytes
L2 LDM write bytes
L2 STM canceled write bytes
HW INT num file desc
BR CN nicRcvBytes

BR TKN nicRcvPckts
BR NTK nicSentBytes
BR MSP nicSentPckts
BR PRC IPInTruncatedPkts
TOT IIS IPInOctets
TOT INS IPOutOctets
VEC DP Application Metrics
FP INS servlet processingTime
LD INS servlet maxTime
SR INS servlet requestCount
BR INS servlet errorCount

VEC INS datasource maxWait
RES STL datasource numIdle
TOT CYC datasource maxActive
L1 DCH datasource numActive
VEC SP Middleware Metrics
L1 DCA request handler bytesSent
L2 DCA request handler bytesReceived
L2 DCR request handler requestCount
L2 DCW request handler maxTime
L1 ICH request handler processingTime
L2 ICH request handler errorCount
L1 ICA cache hits
L2 ICA cache accesses
L2 TCH number threads
L1 TCA
L2 TCA
L2 TCR
L2 TCW
FML INS
FDV INS
FP OPS
SP OPS
DP OPS


